nerdculture.de is one of the many independent Mastodon servers you can use to participate in the fediverse.
Be excellent to each other, live humanism, no nazis, no hate speech. Not only for nerds, but the domain is somewhat cool. ;) No bots in general. Languages: DE, EN, FR, NL, ES, IT

Administered by:

Server stats:

1.2K
active users

#cosinesimilarity

1 post1 participant0 posts today
zartom<p>Finding Similar Products with LINQ: An Efficient Approach<br>Discover efficient product similarity search using LINQ! Learn how LINQ in .NET enables elegant &amp; efficient methods for finding similar products based on various criteria. Optimize your queries for large datasets. <a href="https://mastodon.social/tags/LINQ" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LINQ</span></a> #.NET <a href="https://mastodon.social/tags/SQL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SQL</span></a> <a href="https://mastodon.social/tags/ProductRecommendation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ProductRecommendation</span></a> <a href="https://mastodon.social/tags/CosineSimilarity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CosineSimilarity</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a><br><a href="https://tech-champion.com/database/sql-server/finding-similar-products-with-linq-an-efficient-approach/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tech-champion.com/database/sql</span><span class="invisible">-server/finding-similar-products-with-linq-an-efficient-approach/</span></a><br>...</p>
Kathy Reid<p>For folks who work in <a href="https://aus.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a>, what's the easiest way for me to to calculate the <a href="https://aus.social/tags/CosineSimilarity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CosineSimilarity</span></a> of two strings? I'm looking at sklearn cosine_similarity first. </p><p>Related to hallucination detection in <a href="https://aus.social/tags/ASR" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ASR</span></a> - low cosine similarity indicative of hallucination.</p>