nerdculture.de is one of the many independent Mastodon servers you can use to participate in the fediverse.
Be excellent to each other, live humanism, no nazis, no hate speech. Not only for nerds, but the domain is somewhat cool. ;) No bots in general. Languages: DE, EN, FR, NL, ES, IT

Administered by:

Server stats:

577
active users

#Geophysics

1 post1 participant0 posts today
Nicole Sharp<p><strong>Searching for the Seiche</strong></p><p>On 16 September 2023, seismometers around the world began ringing, registering a signal that — for 9 days — wobbled back and forth every 92 seconds. A second, similar signal appeared a month later, lasting about a week. Researchers tracked the signal’s origin to a remote fjord in East Greenland, where it appeared a glacier front had collapsed. The falling rocks and ice triggered a long-lasting wave — a seiche — that rang back and forth through the fjord for days. </p><p>Simulations showed that a seiche was plausible from a rockfall like the two that caused the seismic signal, but, without first-hand observations, no one could be certain. Now a <a href="https://doi.org/10.1038/s41467-025-59851-7" rel="nofollow noopener" target="_blank">new study</a> has looked at satellite data to confirm the seiche. Researchers found that the then-new Surface Water and Ocean Topography (SWOT) satellite and its high-resolution altimeters had passed over the fjord multiple during the two landslide events. And, sure enough, the satellite captured data showing the water surface in the fjord rising and falling as the seiche ricocheted back and forth. </p><p>It’s a great reminder that having multiple instrument types monitoring the Earth gives us far better data than any singular one. Without both seismometers <em>and</em> the satellite, it’s unlikely that scientists could have truly confirmed a seiche that no one saw firsthand. (Image credit: S. Rysgaard; research credit: <a href="https://doi.org/10.1038/s41467-025-59851-7" rel="nofollow noopener" target="_blank">T. Monahan et al.</a>; via <a href="https://eos.org/articles/new-satellite-adds-evidence-of-an-earth-shaking-wave?__readwiseLocation=" rel="nofollow noopener" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/seiche/" target="_blank">#seiche</a></p>
Nicole Sharp<p><strong>Branching Dendrites</strong></p><p>This award-winning aerial image by photographer Stuart Chape shows a <a href="https://en.wikipedia.org/wiki/Tidal_creek" rel="nofollow noopener" target="_blank">tidal creek</a> in Lake Cakora, New South Wales, Australia. At first glance, it looks much like any river delta, with branching dendritic paths that split into smaller and smaller waterways. That’s deceptive, though, because very different forces shape this creek. Because tides move in and out, a tidal creek is home to flows that move both directions — toward and away from the branches. That also means that flow speeds can change rapidly as the tides shift, which in turn changes which sediments get lifted, dropped, and moved around the creek bed. (Image credit: <a href="https://internationalaerialphotographer.com/index.php/archive/2025-awards-book?2" rel="nofollow noopener" target="_blank">S. Chape/IAPOTY</a>; via <a href="https://www.thisiscolossal.com/2025/07/international-aerial-photo-contest/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/branching-flow/" target="_blank">#branchingFlow</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fractals/" target="_blank">#fractals</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geology/" target="_blank">#geology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/tides/" target="_blank">#tides</a></p>
Nicole Sharp<p><strong>Capturing River Waves</strong></p><p>Rainfall, ice jams, and dam breaks create surges of high flow that make their way down a river in a wave that stretches tens to thousands of kilometers in length. Traditionally, scientists monitor such flow waves using river gauges, which measure river height at specific locations. But gauges are few and far between on many rivers, so a group of researchers are <a href="https://doi.org/10.1029/2024GL113875" rel="nofollow noopener" target="_blank">supplementing that data</a> with the SWOT (Surface Water and Ocean Topography) spacecraft. SWOT bounces microwaves off the water to precisely measure the water’s height, giving researchers a glimpse of the flow wave’s shape along the entire river.</p><p>In their paper, the team identify and describe flow waves on three different rivers — the Yellowstone, Colorado, and Ocmulgee rivers — ranging in height up to 9 meters and stretching up to 400 kilometers. (Image credit: CNES; research credit: <a href="https://doi.org/10.1029/2024GL113875" rel="nofollow noopener" target="_blank">H. Thurman et al.</a>; via <a href="https://gizmodo.com/nasa-satellites-capture-river-tsunamis-surging-hundreds-of-miles-inland-2000605693?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flooding/" target="_blank">#flooding</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rivers/" target="_blank">#rivers</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-image/" target="_blank">#satelliteImage</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Karen E. Lund 💙💛<p>Damn! </p><p>I mean, dam!</p><p>Humanity Has Dammed So Much Water It's Shifted Earth's Magnetic Poles | Science Alert | Tessa Koumoundouros</p><p>"As we trap water behind dams, not only does it remove water from the oceans, thus leading to a global sea level fall, it also distributes mass in a different way around the world,"&nbsp;says [geophysicst Natasha]&nbsp;Valencic. </p><p><a href="https://mastodon.social/tags/Dams" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Dams</span></a> <a href="https://mastodon.social/tags/Poles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Poles</span></a> <a href="https://mastodon.social/tags/Geophysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geophysics</span></a> <a href="https://mastodon.social/tags/SeaLevel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SeaLevel</span></a><br> <a href="https://www.sciencealert.com/humanity-has-dammed-so-much-water-its-shifted-earths-magnetic-poles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sciencealert.com/humanity-has-</span><span class="invisible">dammed-so-much-water-its-shifted-earths-magnetic-poles</span></a></p>
Nicole Sharp<p><strong>Lava Meets Leidenfrost</strong></p><p>Drop water on a surface much hotter than its boiling point, and the liquid will bead up and skitter over the surface, levitated on a cushion of its own vapor. In addition to making the drop hypermobile, this vapor layer insulates it from the heat of the surface, allowing it to survive longer than it would at lower temperatures. Known as the Leidenfrost effect, this phenomenon can show up in lava flows, as well.</p><p><a href="https://en.wikipedia.org/wiki/Pillow_lava" rel="nofollow noopener" target="_blank">Pillow lava</a> is a smooth, bulbous rock formed when lava breaks out underwater. The exiting lava is incandescent and, therefore, incredibly hot — hot enough to vaporize a layer of water surrounding it. The lava can continue to expand until it cools too much to sustain the vapor layer. An elastic skin builds up over the cooling lava. Eventually, a new pillow will bud off, possibly due to a surge in the lava flow or a weak point in the developing skin. (Image credit: <a href="https://unsplash.com/photos/a-close-up-of-a-large-piece-of-lava-in-the-ground-Wbi3dlc580o" rel="nofollow noopener" target="_blank">J. de Gier</a>; research credit: <a href="https://doi.org/10.1144/gsjgs.141.1.0183" rel="nofollow noopener" target="_blank">A. Mills</a>; via <a href="https://www.leidenforce.eu/cms/c_13482845/en/lava-steam-and-a-little-lesson-in-physics-exploring-the-leidenfrost-effect-in-volcanic-eruptions?id=c_13482845&amp;id=c_13482845&amp;__readwiseLocation=" rel="nofollow noopener" target="_blank">LeidenForce</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geology/" target="_blank">#geology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/lava/" target="_blank">#lava</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/leidenfrost-effect/" target="_blank">#LeidenfrostEffect</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vaporization/" target="_blank">#vaporization</a></p>
Nicole Sharp<p><strong>La Grande Dune du Pilat</strong></p><p>Southwest of Bordeaux in France stands Europe’s tallest sand dune, La Grande Dune du Pilat. Some 2.7 kilometers long and over 100 meters high, this dune took shape here over thousands of years. It moves inland a few meters every year as winds blowing from the Atlantic push sand up its shallow seaward side to the dune’s crest. There, sand will avalanche down the steeper leeward side, advancing the dune little by little. The dune’s accumulation has not been steady; during cooler and drier times, sand has collected there, but it took warmer and wetter climes to grow the forests that have helped stabilize the soil and build the dune higher. Humanity has played a role as well, at times introducing new tree species to stabilize the dune. (Image credit: W. Liang; via <a href="https://earthobservatory.nasa.gov/images/154130/a-morphing-monument-of-sand?__readwiseLocation=" rel="nofollow noopener" target="_blank">NASA Earth Observatory</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/aeolian-processes/" target="_blank">#aeolianProcesses</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/dunes/" target="_blank">#dunes</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material/" target="_blank">#granularMaterial</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sand-dunes/" target="_blank">#sandDunes</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Holly<p><a href="https://universeodon.com/tags/stem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>stem</span></a> <a href="https://universeodon.com/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://universeodon.com/tags/earth" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>earth</span></a> <a href="https://universeodon.com/tags/geophysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geophysics</span></a> <a href="https://universeodon.com/tags/spiffy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spiffy</span></a></p>
Dr. Evan J. Gowan<p>Brandes et al present a review of the history of investigations of the forebulge from the North American and Eurasian ice sheets. The collapse of the forebulge is responsible for rising relative sea level along the east coast of the United States.</p><p><a href="https://fediscience.org/tags/SeaLevel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SeaLevel</span></a> <a href="https://fediscience.org/tags/GlacialIsostaticAdjustment" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GlacialIsostaticAdjustment</span></a> <a href="https://fediscience.org/tags/Geophysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geophysics</span></a> <a href="https://fediscience.org/tags/IceSheets" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IceSheets</span></a></p><p> <a href="https://doi.org/10.1029/2024RG000852" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">doi.org/10.1029/2024RG000852</span><span class="invisible"></span></a></p>
Nicole Sharp<p><strong>Martian Streaks Are Dry</strong></p><p>Dark lines appearing on Martian slopes have triggered theories of flowing water or brine on the planet’s surface. But a <a href="https://doi.org/10.1038/s41467-025-59395-w" rel="nofollow noopener" target="_blank">new study suggests</a> that these features are, instead, dry. To explore these streaks, the team assembled a global database of sightings and correlated their map with other known quantities, like temperature, wind speed, and rock slides. By connecting the data across thousands of streaks, they could build statistics about what variables correlated with the streaks’ appearance.</p><p>What they found was that streaks didn’t appear in places connected to liquid water or even frost. Instead, the streaks appeared in spots with high wind speeds and heavy dust accumulation. The team included that, rather than being moist areas, the streaks are dry and form when dust slides down the slope, perhaps triggered by high winds or passing dust devils.</p><p>Although showing that the streaks aren’t associated with water may seem disappointing, it may mean that NASA will be able to explore them sooner. Right now, NASA avoids sending rovers anywhere near water, out of concern that Earth microbes still on the rover could contaminate the Martian environment. (Image credit: NASA; research credit: <a href="https://doi.org/10.1038/s41467-025-59395-w" rel="nofollow noopener" target="_blank">V. Bickel and A. Valantinas</a>; via <a href="https://gizmodo.com/bizarre-streaks-on-mars-arent-caused-by-water-after-all-study-suggests-2000605177?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mars/" target="_blank">#Mars</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
💧🌏 Greg Cocks<p>Trans-Oceanic Distributed Sensing Of Tides Over Telecommunication Cable Between Portugal &amp; Brazil<br>--<br><a href="https://lnkd.in/gBPpBchx" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">lnkd.in/gBPpBchx</span><span class="invisible"></span></a> &lt;-- shared paper<br>--<br>[not something I know much about technically - so what better reason to read a paper!? What a fascinating &amp; clever repurposing idea]<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/geophysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geophysics</span></a> <a href="https://techhub.social/tags/geophysical" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geophysical</span></a> <a href="https://techhub.social/tags/remotesensing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>remotesensing</span></a> <a href="https://techhub.social/tags/model" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>model</span></a> <a href="https://techhub.social/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/spatiotemporal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatiotemporal</span></a> <a href="https://techhub.social/tags/cable" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cable</span></a> <a href="https://techhub.social/tags/transoceanic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transoceanic</span></a> <a href="https://techhub.social/tags/cable" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cable</span></a> <a href="https://techhub.social/tags/tide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tide</span></a> <a href="https://techhub.social/tags/waves" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>waves</span></a> <a href="https://techhub.social/tags/tsunami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tsunami</span></a> <a href="https://techhub.social/tags/earlywarning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>earlywarning</span></a> <a href="https://techhub.social/tags/repurposing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>repurposing</span></a> <a href="https://techhub.social/tags/usecase" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>usecase</span></a> <a href="https://techhub.social/tags/appliedscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>appliedscience</span></a> <a href="https://techhub.social/tags/appliedtechnology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>appliedtechnology</span></a> <a href="https://techhub.social/tags/fibreoptic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fibreoptic</span></a> <a href="https://techhub.social/tags/microwave" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microwave</span></a> <a href="https://techhub.social/tags/modulation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modulation</span></a> <a href="https://techhub.social/tags/submarine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>submarine</span></a> <a href="https://techhub.social/tags/telecom" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>telecom</span></a> <a href="https://techhub.social/tags/telecommunications" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>telecommunications</span></a> <a href="https://techhub.social/tags/sensor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sensor</span></a> <a href="https://techhub.social/tags/realtime" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>realtime</span></a> <a href="https://techhub.social/tags/monitoring" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>monitoring</span></a> <a href="https://techhub.social/tags/measurememnt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>measurememnt</span></a> <a href="https://techhub.social/tags/marine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>marine</span></a> <a href="https://techhub.social/tags/ocean" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ocean</span></a> <a href="https://techhub.social/tags/temperature" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>temperature</span></a> <a href="https://techhub.social/tags/tidal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tidal</span></a> <a href="https://techhub.social/tags/climate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climate</span></a> <a href="https://techhub.social/tags/climatechange" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climatechange</span></a> <a href="https://techhub.social/tags/naturalhazards" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>naturalhazards</span></a> <a href="https://techhub.social/tags/risk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>risk</span></a> <a href="https://techhub.social/tags/hazard" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hazard</span></a> <a href="https://techhub.social/tags/currents" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>currents</span></a> <a href="https://techhub.social/tags/circulation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>circulation</span></a> <a href="https://techhub.social/tags/infrastructure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>infrastructure</span></a></p>
Nicole Sharp<p><strong>Io’s Missing Magma Ocean</strong></p><p>In the late 1970s, scientists conjectured that Io was likely a volcanic world, heated by <a href="https://en.wikipedia.org/wiki/Tidal_heating" rel="nofollow noopener" target="_blank">tidal forces</a> from Jupiter that squeeze it along its elliptical orbit. Only months later, images from Voyager 1’s flyby confirmed the moon’s volcanism. Magnetometer data from Galileo’s later flyby suggested that tidal heating had created a shallow magma ocean that powered the moon’s volcanic activity. But <a href="https://doi.org/10.1038/s41586-024-08442-5" rel="nofollow noopener" target="_blank">newly analyzed data</a> from Juno’s flyby shows that Io doesn’t have a magma ocean after all.</p><p>The new flyby used radio transmission data to measure any little wobbles that Io caused by tugging Juno off its expected course. The team expected a magma ocean to cause plenty of distortions for the spacecraft, but the effect was much slighter than expected. Their conclusion? Io has no magma ocean lurking under its crust. The results don’t preclude a deeper magma ocean, but at what point do you distinguish a magma ocean from a body’s liquid core?</p><p>Instead, scientists are now exploring the possibility that Io’s magma shoots up from much smaller pockets of magma rather than one enormous, shared source. (Image credit: NASA/JPL/USGS; research credit: <a href="https://doi.org/10.1038/s41586-024-08442-5" rel="nofollow noopener" target="_blank">R. Park et al.</a>; see also <a href="https://www.quantamagazine.org/whats-going-on-inside-io-jupiters-volcanic-moon-20250425/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Quanta</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/io/" target="_blank">#Io</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magma/" target="_blank">#magma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/subsurface-oceans/" target="_blank">#subsurfaceOceans</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/tidal-heating/" target="_blank">#tidalHeating</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/volcano/" target="_blank">#volcano</a></p>
Nicole Sharp<p><strong>Ponding on the Ice Shelf</strong></p><p>Glaciers flow together and march out to sea along the Amery Ice Shelf in this satellite image of Antarctica. Three glaciers — flowing from the top, left, and bottom of the image — meet just to the right of center and pass from the continental bedrock onto the ice-covered ocean. The ice shelf is recognizable by its plethora of meltwater ponds, which appear as bright blue areas. Each austral summer, meltwater gathers in low-lying regions on the ice, potentially destabilizing the ice shelf through fracture and drainage. This region near the ice shelf’s grounding line is particularly prone to ponding. Regions further afield (right, beyond the image) are colder and drier, often allowing meltwater to refreeze. (Image credit: W. Liang; via <a href="https://earthobservatory.nasa.gov/images/153841/meltwater-ponds-on-the-amery-ice-shelf" rel="nofollow noopener" target="_blank">NASA Earth Observatory</a>)</p><p></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/glacier/" target="_blank">#glacier</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-shelf/" target="_blank">#iceShelf</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-image/" target="_blank">#satelliteImage</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
earthling<p>Our Concept of the Earth. What We Know About Our Planet by Lapo Boschi, 2024</p><p><a href="https://link.springer.com/book/10.1007/978-3-031-71579-2" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">link.springer.com/book/10.1007</span><span class="invisible">/978-3-031-71579-2</span></a></p><p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/bookstodon" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>bookstodon</span></a></span> <br><a href="https://mastodon.social/tags/books" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>books</span></a> <br><a href="https://mastodon.social/tags/nonfiction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nonfiction</span></a> <br><a href="https://mastodon.social/tags/geophysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geophysics</span></a> <br><a href="https://mastodon.social/tags/Earth" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Earth</span></a></p>
Nicole Sharp<p><strong>Non-Newtonian Effects in Magma Flows</strong></p><p>As magma approaches the surface, it forces its way through new and existing fractures in the crust, forming dikes. When a volcano finally erupts, the magma’s viscosity is a major factor in just how explosive and dangerous the eruption will be, but <a href="https://doi.org/10.1029/2024AV001495" rel="nofollow noopener" target="_blank">a new study shows</a> that what we see from the surface is a poor predictor of how magma actually flows within the dike.</p><p>Researchers built their own artificial dike using a clear elastic gelatin, which they injected water and shear-thinning magma-mimics into. By tracking particles in the liquids, they could observe how each liquid followed on its way to the surface. All of the liquids formed similar-looking dikes at a similar speed, but within the dike, the liquids flowed very differently. Water cut a central jet through the gelatin, then showed areas of recirculation along the outer edges. In contrast, the shear-thinning liquids — which are likely more representative of actual magma — showed no recirculation. Instead, they flowed through the dike in a smooth, fan-like shape.</p><p>The team cautions that surface-level observations of developing magma dikes provide little information on the flow going on underneath. Instead, their results suggest that volcanologists modeling magma underground should take care to include the magma’s shear-thinning to properly capture the flow. (Image credit: <a href="https://unsplash.com/photos/brown-and-black-abstract-painting-_A0FcwFh7DE" rel="nofollow noopener" target="_blank">T. Grypachevska</a>; research credit: <a href="https://doi.org/10.1029/2024AV001495" rel="nofollow noopener" target="_blank">J. Kavanagh et al.</a>; via <a href="https://eos.org/research-spotlights/matching-magma-dikes-may-have-different-flow-patterns?__readwiseLocation=" rel="nofollow noopener" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magma/" target="_blank">#magma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/piv/" target="_blank">#PIV</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/volcano/" target="_blank">#volcano</a></p>
Ele Willoughby, PhD<p>Happy birthday to Danish <a href="https://spore.social/tags/seismologist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>seismologist</span></a> Inge Lehmann (1888 – 1993) who demonstrated that the Earth’s core is not a single molten sphere, but contained an inner solid core, in ‘36. She was a pioneer <a href="https://spore.social/tags/womanInScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>womanInScience</span></a>, a brilliant seismologist &amp; lived to be 105.⁠<br>⁠<br>As she first postulated, the <a href="https://spore.social/tags/earth" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>earth</span></a> has roughly 3 equal concentric sections: mantle, liquid outer core &amp; solid inner core. The crust, on which we live is merely 🧵1/n</p><p> <a href="https://spore.social/tags/printmaking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>printmaking</span></a> <a href="https://spore.social/tags/sciArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sciArt</span></a> <a href="https://spore.social/tags/geophysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geophysics</span></a> <a href="https://spore.social/tags/histstm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>histstm</span></a> <a href="https://spore.social/tags/seismology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>seismology</span></a> <a href="https://spore.social/tags/womenInSTEM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>womenInSTEM</span></a></p>
💧🌏 Greg Cocks<p>REGIS II - The Hydrogeological Model [Nederlands]<br>--<br><a href="https://www.dinoloket.nl/en/regis-ii-the-hydrogeological-model" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">dinoloket.nl/en/regis-ii-the-h</span><span class="invisible">ydrogeological-model</span></a> &lt;-- shared project/data overview 1<br>--<br><a href="https://www.dinoloket.nl/en/subsurface-models/map" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">dinoloket.nl/en/subsurface-mod</span><span class="invisible">els/map</span></a> &lt;-- shared web mapping site<br>--<br><a href="https://basisregistratieondergrond.nl/inhoud-bro/registratieobjecten/modellen/regis-ii-hydrogeologisch-model-hgm/#:~:text=REGIS%20II%20is%20een%203D,lagen%20in%20de%20ondergrond%20zijn" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">basisregistratieondergrond.nl/</span><span class="invisible">inhoud-bro/registratieobjecten/modellen/regis-ii-hydrogeologisch-model-hgm/#:~:text=REGIS%20II%20is%20een%203D,lagen%20in%20de%20ondergrond%20zijn</span></a> &lt;-- shared project/data overview 2<br>--<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/geology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geology</span></a> <a href="https://techhub.social/tags/hydrogeology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydrogeology</span></a> <a href="https://techhub.social/tags/Nederland" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Nederland</span></a> <a href="https://techhub.social/tags/Holland" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Holland</span></a> <a href="https://techhub.social/tags/Dutch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Dutch</span></a> <a href="https://techhub.social/tags/wells" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>wells</span></a> <a href="https://techhub.social/tags/boreholes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>boreholes</span></a> <a href="https://techhub.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> <a href="https://techhub.social/tags/core" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>core</span></a> <a href="https://techhub.social/tags/lithology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lithology</span></a> <a href="https://techhub.social/tags/REGISII" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>REGISII</span></a> <a href="https://techhub.social/tags/hydrogeological" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydrogeological</span></a> <a href="https://techhub.social/tags/model" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>model</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/water" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>water</span></a> <a href="https://techhub.social/tags/hydrology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydrology</span></a> <a href="https://techhub.social/tags/aquifer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aquifer</span></a> <a href="https://techhub.social/tags/aquitard" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aquitard</span></a> <a href="https://techhub.social/tags/opendata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opendata</span></a> <a href="https://techhub.social/tags/digital" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>digital</span></a> <a href="https://techhub.social/tags/sedimentology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sedimentology</span></a> <a href="https://techhub.social/tags/hydrologic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydrologic</span></a> <a href="https://techhub.social/tags/pumping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pumping</span></a> <a href="https://techhub.social/tags/tests" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tests</span></a> <a href="https://techhub.social/tags/hydraulic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydraulic</span></a> <a href="https://techhub.social/tags/conductivity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>conductivity</span></a> <a href="https://techhub.social/tags/transmissivity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transmissivity</span></a> <a href="https://techhub.social/tags/geophysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geophysics</span></a></p>
okanogen VerminEnemyFromWithin<p>Let's talk about "<a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a>", <a href="https://mastodon.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a>, and <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a>, which I don't put in quotes. <br>First, I am not anti-science, I am anti-JUNKscience and MARKETING, and there is a difference.<br>Why can I discuss a field I'm not in with some knowledge? I spent over 30 years in <a href="https://mastodon.social/tags/geophysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geophysics</span></a>, <a href="https://mastodon.social/tags/SignalProcessing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignalProcessing</span></a>, and in <a href="https://mastodon.social/tags/geology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geology</span></a> and <a href="https://mastodon.social/tags/hydrology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydrology</span></a> and <a href="https://mastodon.social/tags/hydrogeology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydrogeology</span></a> modelling. People doing this kind of work (along with <a href="https://mastodon.social/tags/meteorology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>meteorology</span></a> and <a href="https://mastodon.social/tags/Climatology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Climatology</span></a>) are the progenitors of the current science. 1/</p>
Nicole Sharp<p><strong>On the Mechanics of Wet Sand</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sandholes1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sandholes2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sandholes3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Sand is a critical component of many built environments. As most of us learn (via sand castle), adding just the right amount of water allows sand to be quite strong. But with too little water — or too much — sand is prone to collapse. For those of us outside the construction industry, we’re most likely to run into this problem on the beach while digging holes in the sand. In this Practical Engineering video, Grady explains the forces that stabilize and destabilize piled sand and where the dangers of excavation lie. (Video and image credit: Practical Engineering)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/civil-engineering/" target="_blank">#civilEngineering</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material/" target="_blank">#granularMaterial</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material-2/" target="_blank">#granularMaterial_</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/infrastructure/" target="_blank">#infrastructure</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shear/" target="_blank">#shear</a></p>
Nicole Sharp<p><strong>Martian Mud Volcanoes</strong></p><p>Mars features mounds that resemble our terrestrial <a href="https://en.wikipedia.org/wiki/Mud_volcano" rel="nofollow noopener" target="_blank">mud volcanoes</a>, suggesting that a similar form of mudflow occurs on Mars. But Mars’ thin atmosphere and frigid temperatures mean that water — a prime ingredient of any mud — is almost always in either solid or gaseous form on the planet. So <a href="https://doi.org/10.1038/s43247-025-02110-w" rel="nofollow noopener" target="_blank">researchers explored</a> whether salty muds could flow under Martian conditions. They tested a variety of salts, at different concentrations, in a low-pressure chamber calibrated to Mars-like temperatures and pressures. The salts lowered water’s freezing point, allowing the muds to remain fluid. Even a relatively small amount of sodium chloride — 2.5% by weight — allowed muds to flow far. The team also found that the salt content affected the shape the flowing mud took, with flows ranging from narrow, ropey patterns to broad, even sheets. (Image credit: <a href="https://commons.wikimedia.org/wiki/File:Gryphons_at_the_central_crater_of_the_Dashgil_mud_volcano_in_Azerbaijan_(130).JPG" rel="nofollow noopener" target="_blank">P. Brož/Wikimedia Commons</a>; research credit: <a href="https://doi.org/10.1038/s43247-025-02110-w" rel="nofollow noopener" target="_blank">O. Krýza et al.</a>; via <a href="https://eos.org/articles/salt-may-be-key-to-martian-mudflows?__readwiseLocation=" rel="nofollow noopener" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mars/" target="_blank">#Mars</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mud/" target="_blank">#mud</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mud-pots/" target="_blank">#mudPots</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mud-volcano/" target="_blank">#mudVolcano</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a></p>
jwr<p>I believe is customary re-post an introduction after moving instances... so here's mine:</p><p>Software engineer working in <a href="https://hachyderm.io/tags/geophysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geophysics</span></a>. <a href="https://hachyderm.io/tags/8bit" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>8bit</span></a> hacker in the 80s, <a href="https://hachyderm.io/tags/16bit" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>16bit</span></a> hobbyist in the early 90s before finding my home on <a href="https://hachyderm.io/tags/unix" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>unix</span></a> and finally <a href="https://hachyderm.io/tags/linux" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linux</span></a>. Author of a few simple open source utilities with zero users.</p><p>tech: <a href="https://hachyderm.io/tags/dragon32" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dragon32</span></a> <a href="https://hachyderm.io/tags/samcoupe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>samcoupe</span></a> <a href="https://hachyderm.io/tags/amiga" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>amiga</span></a> <a href="https://hachyderm.io/tags/rust" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rust</span></a> <a href="https://hachyderm.io/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://hachyderm.io/tags/neovim" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neovim</span></a> <a href="https://hachyderm.io/tags/debian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>debian</span></a> <a href="https://hachyderm.io/tags/nixos" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nixos</span></a></p><p>non-tech: <a href="https://hachyderm.io/tags/cycling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cycling</span></a> <a href="https://hachyderm.io/tags/guitar" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>guitar</span></a> <a href="https://hachyderm.io/tags/astronomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>astronomy</span></a></p>